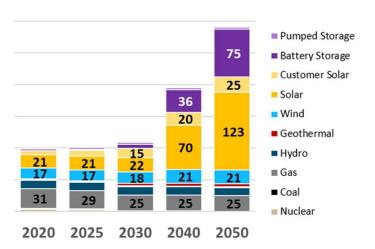


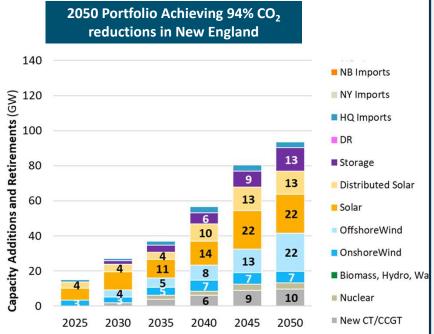
Machine Learning for Net Load Uncertainty 2020 INFORMS Conference

Arne Olson
Senior Partner

Wind and solar central to economy-wide decarbonization

2050 Portfolio Achieving 92% CO₂ reductions in California



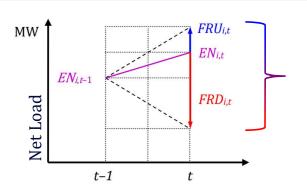


Wind and solar amplify "fuel uncertainty"

- + Grid operators have <u>always</u> balanced variability and uncertainty in demand and supply
- Wind and solar generators increase the magnitude of supplyside variability
 - Potential negative impacts to reliability if not properly managed
- + "Net Load" is frequently used to quantify balancing requirements
 - Net load = Load Wind Generation –
 Solar Generation

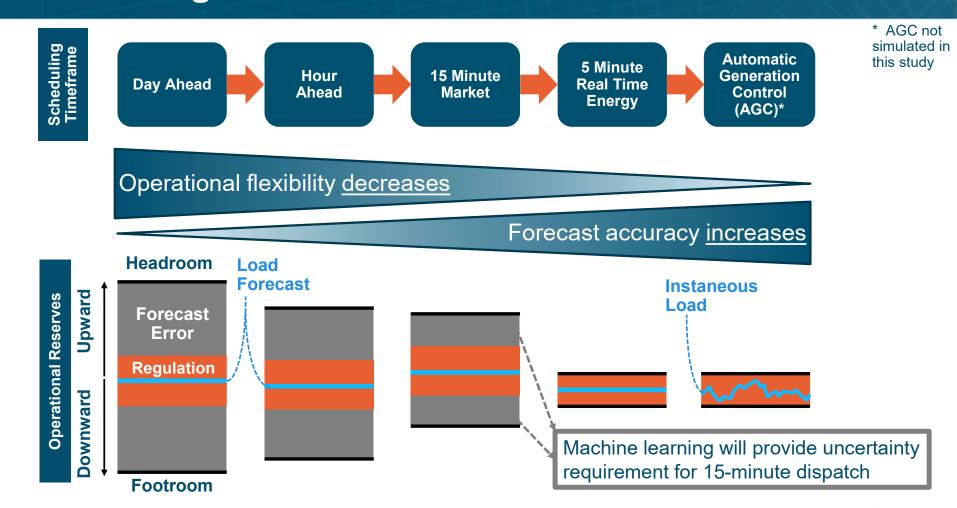
How big is the challenge?

- In 2019 CAISO ancillary service procurement cost was ~\$150M. Wholesale market ~\$8 Billion. E3 is targeting reducing total CAISO system production costs by 1-3% (~\$100M) and GHG emissions by ~1.5 MMT CO₂/yr
 - Billions of dollars worldwide
- In a highly renewable future CAISO grid, solar curtailment could be reduced by 15% when at least 15% of CAISO FRP is procured from VERs



How far could net load *reasonably* be expected to go up or down between time intervals?

Scheduling timeframes and reserve needs

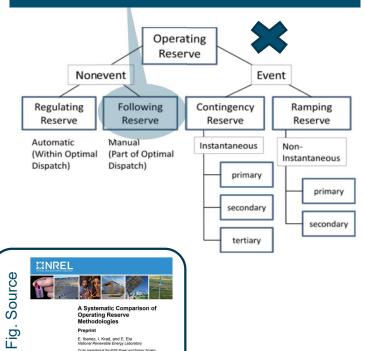


Energy+Environmental Economics

-

Root-Mean-Square -> Machine Learning

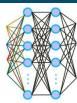
Our ARPA-E project focuses on reserves for forecast uncertainty of load, wind, and solar – a <u>non-event</u> type of reserve



Root-mean-square (RMS) method is frequently used

Flexibility Reserve =
$$\sqrt{\Phi 70_{\text{hour-load}}^2 + \Phi 70_{\text{hour-wind}}^2 + \Phi 70_{\text{hour-PV}}^2}$$

Machine learning could offer significant advantages



Assumes that error between L-W-S components is uncorrelated

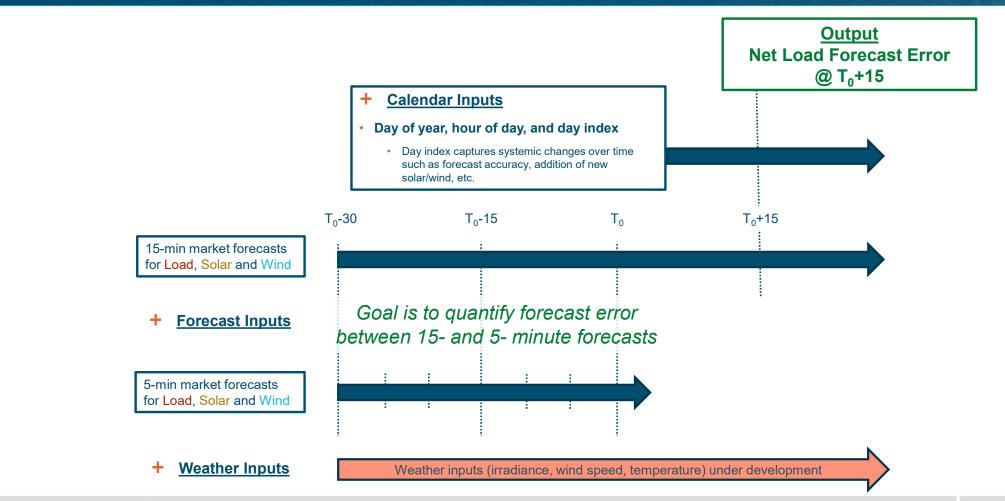
Correlations

Can include underlying correlations resulting from coincident weather

Historical record has very sparse data to create a prediction interval at P95+

Machine learning can "fill in" the data record by including drivers of under/overforecast events

Predicting Net Load Forecast Error



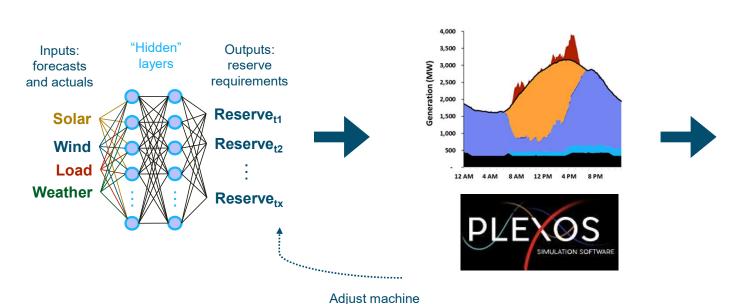
Energy+Environmental Economics

Study process

Machine learning generates reserve needs using artificial neural network

PLEXOS production simulation of CAISO system validates operability

Summary and CAISO Comparison



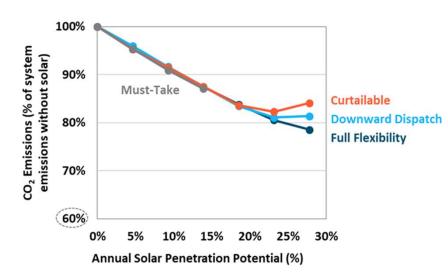
learning if system is not operable

- Quantify optimal level of reserve to hold
- Estimate cost and GHG savings
- Compare machine learning reserves to CAISO current practice

Wind and Solar Flexibility

- Predicting <u>net</u> load implies that solar and wind won't be curtailed
 - Net load = Load [uncontrollable] Wind -[uncontrollable] Solar
- + A highly renewable grid will experience frequent curtailment
 - Balancing requirements are overestimated during curtailment events
 - "Supply" of balancing resources can include controllable wind + solar
- + Machine learning will be used to develop balancing requirements when wind and solar are partially curtailed
 - Also to develop limits on curtailed wind + solar contributing to flexibility/ramping needs

FirstSolar / TECO / E3 study on solar dispatch for Tampa Florida



Operating and scheduling solar power plants in a more flexible manner results in lower CO₂ emissions

Machine learning provides renewable reserve limits

Machine Learning estimates correlations between solar/wind and net load forecast error

Production simulation quantifies benefits of solar and wind reserves and ensures operability

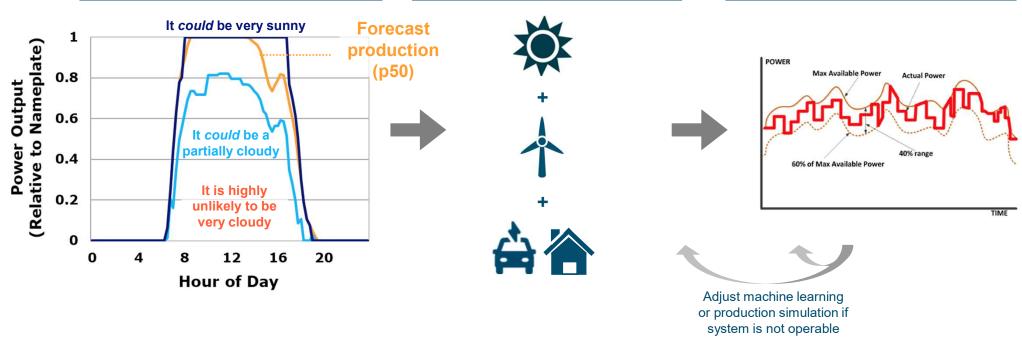


Figure source: https://www.nrel.gov/docs/fy17osti/67799.pdf

Conclusions

- + E3 to work with the California Independent System Operator in formulating and evaluating E3's machinelearning module and PLEXOS model
 - CAISO to provide system operator perspective on current practices
 - E3 to deliver tool to CAISO that allows for dynamic reserves predictions, CAISO to support E3 by evaluating this tool
 - E3 to release final version of this tool to CAISO and ARPA-E for their use at project conclusion
- + E3 would like to thank CAISO and ARPA-E for their support for this project

Project team

E3

Jimmy Nelson John Stevens

Project Managers

Machine Learning + Data Cleaning and Acquisition Yuchi Sun Charles Gulian Vignesh Venugopal Mengyao Yuan

Saamrat Kasina

PLEXOS

Adrian Au

Project Manager Clyde Loutan Principal,

Support

Peter Klauer

Senior Advisor, Smart Grid Technology

Guillermo Bautista Alderete

Director, Market Analysis and Forecasting

Thank You!

Energy and Environmental Economics, Inc. (E3)

44 Montgomery Street, Suite 1500

San Francisco, CA 94104

Tel 415-391-5100

Web http://www.ethree.com

Arne Olson, Senior Partner (arne@ethree.com)

Dr. Jimmy Nelson, Managing Consultant

Dr. John Stevens, Senior Consultant

Dr. Yuchi Sun, Consultant